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1. INTRODUCTION

This report describes the results of an experimental feasibility investigation of machining
isogrid structures using abrasive-waterjet (AWJ) technology. Thc work was conducted as a
Phase I SBIR (Small Business Innovation Research) progra :: far the U.S Air Force by Quest
Integrated, Inc., under contract number F04704-90C-0033,

Isogrids are lightweight structures with high strength-to-weight ratios. Figure | shows a
section of a typical isogrid pattern for the propulsion skirt in a post-boost vehicle. Isogrids are
used in small ICBMs and SSD’'s extendable launch vehicles. They have recently been dropped
from the ICBM production program, however, because of high manufacturing costs. Current
isogrid manufacturing processes are prohibitively expensive due to slow machining cycles and
untenable scrap rates,

Milling is the current method used for machining the isogrid pattern. After a part is
milled, it is then rolled into a cylindrical form. This process often results in distortions of the
isogrid ribs., It is also expensive and time~consuming, and limited to certain isogrid geometries,

Abrasive-waterjets have proven to be very successful in many machining applications and
offer an economical alternative for the machining of isogrid structures. The potential
advantages of the AWJ technique for this application are:

e High productivity

e No residual stresses

¢ Integral machining capability

¢ Capability of machining a wide range of isogrid geometries and materials

The present experimental investigation was conducted to study novel concepts tor
machining isogrid structures using AWJs. The main uanufacturing technique addressed was
integral machining with an AWJ to mill cylindrical .ections internally with the net isogrid
pattern shape. Several other concepts were also investigated. Both the technical and economic
feasibility of the AWJ method were evaluated,

In this report, background information about AWIJ cutting is presented first in the
following section. Then the Phase I objectives and technical approach are reviewed, followed
by details of the experimental machining tests and the economic analysis. Conclusions are
summarized and recommendations presented in the final section,

TR-508/R. 12-90 1
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2.  BACKGROUND INFORMATION

In this section, general background information on the AW] technology is presented, along
with a description of the single-angled rotary AWJ, an AWJ geometry that was tested in this
study.

2.1 AWJ Nozzle and Parameters

Figure 2 shows a schematic of an AWJ nozzle and the most critical performance
parameters. Water pressurized to 60 ksi enters the nozzle and is then expelled through a
sapphire orifice to form a coherent high-velocity waterjet, Typical jet diameters are 0.006 to
0.030 inch, and typical jet velocities are 1500 to 3000 ft/sec. The flow of the high-velocity
waterjet into the concentrically aligned mixing tube creates a vacuum, which is used to
transport abrasives from a hopper to the nozzle abrasive chamber via a suction hose. A typical
abrasive material is garnet, which has flow rates of up to 3 Ib/min. Medium to fine sizes
(mesh 60 to mesh 200) are most commonly nsed for metal, glass, and resin composites.
Abrasives dre accelerated and axially oriented (focused) in the mixing tube, which has a length-
to-diameter ratio between 50 and 100. Typical tube diameters are 0.03 to 0.09 inch, with
lengths up to 6 inches, As a result of momentum transfer between the water and the abrasives,
a focused, high-velocity stream of particles (the AWJ) exits the nozzle aud performs the cutting.

Two wear modes of erosion are involved in the AWJ material removal process: (1) the
cutting wear mode, which is a micromachining process that occurs at shallow angles of impact,
and (2) the deformation wear mode, which occurs at large angles of impact and results in
material removal due to microcracking and plastic deformation. Observations of cut surfaces do
not suggest any thermal modes of material removal. Because of the very localized erosion
process of AWJs, there are no adverse mechanical effects associated with the cutting process,
such as residual stress.

2.2 Current Performance of AWJs

Many materials can be cut with AW]Js, including hard steels, titanium, aluminum, cast
iron, high-strength composites, armor-layered glass, ceramics, rocks, and steel-reinforced con-
crete. Figure 3a shows a sample of laminated armor glass cut with an AWJ. AWIJs have also
been investigated for some machining operations, such as milling, turning, and piercing
(Hashish, 1988). Figure 3b shows a sample of a milled shape in glass. Milling with an AW) is
accomplished by multipass traverses of the jet over the material. The material removal rate and
surface teatural featurec are controlled by varying the AWJ parameters. Figure 3¢ shows a
magnesium boron carbide rod turned with an AWJ. One pass was used to produce a near-net

TR-508/R. 1:2-90 3
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shape and another to finish the part. Tensile tests conducted on turned parts indicated that

AWJ machining does not alter the tensile characteristics of the material.

2.3 Single-Angled Rotary AWJ

The concept of a single-angled jet in a circular tube was selected for this study because
of its versatility, ease of manufacture, and ease of application. The single-angled rotary AWIJ
tool consists of a stem, a high-pressure tubte, a nozzle, and water and abrasives swivels, as
shown in Figure 4. Abrasives flow to the nozzle through the annulus between the high-pressure
conduit and the outer stem. The waterjet nozzle is machined so that the jet exits at nominally
the same angle as the inclination of the mixing tube., The life expectancy for a mixing tube de-
pends on a number of factors, such as the waterjet pressure, the tube diameter, and the abrasive

flow rate. The outer stem of the tool used in this study was 0,75 inch in diameter,

TR-508/R. 12-90 6
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3. OBJECTIVES

The main objective of this Phase I research program was to determine the overall
feasibility of using abrasive-waterjets to machine isogrid structures to net shapes. The specific
objectives were to:

(1) Determine the AWJ parameters for linear cutting of isogrid patterns;

(2) Determine the AWJ parameters for milling of isogrid patterns;

(3) Investigate the feasibility of isogrid manutacturing using AWJ cutting and diffusion

bonding; and

(4) Estimate the economics of AWJ machining of isogrid structures,

The results of these tests are presented in Section §.

4. TECHNICAL APPROACH

The technical approach in this research was basically experimental and was supported by
economic analyses, The work focused on using AWJs for the net-shape machining of isogrid
patterns on the internal wall of aluminum tubes. Mockup parts were machined to include the
basic geometries of actual isogrid patterns.

To achieve the objectives of this study, the work was divided into the following tasks:

Task 1 - Expcrimental Preparation

Task 2 - Exploratory Milling Tests with AWJs
Task 3 - Milling of Mockup Isogrid Patterns
Task 4 - Economic Analysis

The exploratory milling tests (Task 2) were conducted to evaluate the feasibility of three
different approaches:

(1) Linear cutting then diffusion bonding an external skin on the tube

(2) Milling with a single-angled rotary AWJ

(3) AWJ milling with a steel mask

The results of these tests are presented in Section 5. An investigation was also made of the
feasibility of using diffusion bonding, as proposed in the first approach. The results of this
investigation are discussed in Section 6.

The demonstration milling tests (Task 3) were conducted using the most feasible approach,
as determined in Task 2, to study the process in detail. The results of the demonstration tests
are presented in Section 7.

The economic analysis (Task 4) was conducted to estimate the approximate cost of
machining isogrid structures using AWJs. The analysis is presented in Section 8.

TR-508/R. 12-90 8




5. EXPERIMENTAL INVESTIGATION

The experimental results obtained with the three different approaches to isogrid
machining are described in this section. For each approach, we first describe the experimental

setup, then we discuss the quantitative and qualitative results obtained with that approach.

8.1 Linear Cutting of Isogrid Patterns

A conventional abrasive-waterjet nozzle was mounted on a linear traverse mechanism to
cut aluminum and steel plates, These tests were conducted to evaluate the first machining
approach and to obtain data on steel and aluminum cutting applicable in evaluating the third
approach. The first approach involves two steps: (1) through-cutting of an isogrid pattern in
aluminum tubes where cutting can be performed from either the inside or outside of the tube,
and (2) bonding of an aluminum skin on the outside wall of the machined aluminum tube,
Although aluminum cutting rates can be predicted using the equation given below, tests were
conducted for confirmation. Aluminum cutting rates can be used to determine the total isogrid
machining time and cost.

The linear cutting data are also important for evaluating the third machining approach, in
which a mask or template made from an erosion-resistant material, such as steel, is used. The
isogrid pattern is cut in the mask, which is then mounted inside the aluminum tube to be milled
with the isogrid pattern. Cutting tests were conducted to compare the erosion rate of the steel
relative to aluminum; and it was confirmed that steel masks could be used repeatedly. High-
strength steels and carbides will offer more durable masks, The use of mild steel, however,
which is relatively inexpensive, is adequate for concept demonstration,

Pattern cutting in aluminum and steel with AWJs can be achieved to produce accurate
parts free from distortions or residual stresses. The cutting rates can be predicted from the
following equation (Hashish, 1989b):

N (1 - Ny?
NiNs * “NaNs
l-¢

A - 0282 ¢
d

+ Cr(1-Ny)

where h is the depth of cut, dj is the AWJ diameter, ¢ is an experimental factor, Ct is the
frictional drag coefficient, and N1, N2, Ns and N4 are as follows;

Ve xcd,’
Ny ==~ Ny = SV
u €
No =5 M=

where V is the particle velocity, V. is the critical particle velocity, ¢ is the material specific

energy, m, is the abrasive flow rate, u is the traverse rate, and ¢ is the flow stress.

TR-508/R. 12-90 9




Typical data for AWJ cutting of aluminum and steel are shown in Figures 5 and 6,
respectively, while Figure 7 shows agreement between predictions using the above equation and
experimental results,

Because the cutting rate equation cannot predict the quality of cuts, a number of tests
were conducted to cut 0.25-inch-thick aluminum and steel at different rates, slower than the
maximum cutting speed, to obtain relatively smooth, straight cuts, The cutting conditions were:

Waterjet pressure, p = 50 ksi
Waterjet orifice size, d, = 0,018 inch
Mixing tube diameter, dy, = 0.047 inch
Mixing tube length, Iy, = 4 inches

Abrasive flow rate, m, = 1.52 Ib/min

The observed cutting speeds to obtain relatively smooth cutting edges reached 30 and
10 in./min for aluminum and steel, respectively. Figure 8 shows the kerf width data obtained
at the different cutting speeds. The variation in kerf width implies that the edges of the isogrid
webs may be tapered. From a structural point of view, this may be superior to straight-walled
webs. It should be mentioned here that straight walls can be obtained using the AWIJ by
varying the jet parameters,

The total cutting time for isogrid patterns will be discussed later for both aluminum and
steel masks.

5.2 Milling with Single-Angled Rotary AWJ

A limited experimental effort was conducted using a single-angled rotary AWJ tool for
the milling of isogrid patterns. Figure 9 shows the experimental setup for milling with the
rotary AWJ tool. The aluminum sample is mounted on a work table inside the catcher tank,
The rotary AW]J tool is mounted on a traverse mechanism above the catcher and work table.

A total of six milling tests were conducted to study the degree to which the milling depth
can be controlled, Due to the rotary motion of the advancing tool, material exposure to the jet
is not uniform, i.e., the circular passes of the jet are concentrated near the edges of the cut
along the direction of cross feed. This lack of uniformity leaves a "W"-shaped slot that is
deeper near the edges than over the central area, which is relatively uniform in depth., This
"W"-shaped cavity can be made more uniform by masking the edges so that, in these areas of
concentrated jet overlap, the jet is impinging on the mask rather than in the target material.
Figure 10 shows milled aluminum samples using the rotary tool with masked edges at different
degrees of overlap. The overlap is controlled by the cross-feed rate and rotational speed as
given in the appendix. Note that test number 64 produced noticeable "tool marks," while other

TR-508/R. 12-90 10
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Figure 10,  Single-Angled Rotary AWJ Tool Milling Results
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cuts do not show such marks and have similar surface topography. Visual inspection of the
pocket depth indicates that the mask has significantly reduced the depth variation,

5.3 Milling with Conventional AWJ Nozzle

This milling approach proved to be the most feasible and consequently represented the
majority of the experimental investigation. In this section, we describe the milling test setup,
experimental procedure, and results.

5.3.1 Milling Test Setup

An experimental test setup was prepared to conduct the milling experiments on curved
mockup cylindrical parts that would simulate actual parts. A typical isogrid pattern was
included in these experiments.

An overview of the isogrid milling system used for the isogrid pattern generation tests is
shown in Figure 11. The system contained two axes of motion, cross-feed (linear traverse) of
the AW]J tool and part rotation. The rotating motion was used to produce the high rate of linear
speed between the nozzle and the sample (4,000 to 12,000 in./min); this high rate is difficult to
achieve using a linear traverse system. The cross-feed motion of the AWJ tool was used to
control the amount of overlap of the AWJ from one revolution of the drum to the next. Both
motions were driven by DC servo motors and were computer controlled. Cross-feed and rotary
motion parameters could be varied by changing the computer program, which facilitated rapid
testing.

Figure 12 shows the milling setup in more detail. The samples were placed in the drum
and covered with a mask in which the desired isogrid pattern had been AWJ cut. Figure 13
shows a typical mask, The masks were made of mild steel for ease of manufacture and low
cost, however, for production of parts, the masks could be made of harder material such as
tungsten carbide which would increase their useful life time. This test setup provided the
ability to change several parameters. Waterjet orifice size could be changed by placing different
orifices in the abrasive jet assembly. The mixing tube length and diameter can be varied by
replacing the mixing tubes in the abrasive jet assembly. The abrasive jet mounting bracket is
adjustable in the vertical direction to allow variation in the standoff distance,

Figure 14 shows an assembly drawing of the rotating drum mechanism designed and built
specifically for these tests. The drum is mounted on a shaft supported by two bearings. A
three-to-one reduction chain drive connects the drum shaft to the drive shaft. The drive shaft

is connected to a DC servo motor through a flexible coupling,

TR-508/R. 12-90 15
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5.3.2 Experimental Plan

The experimental plan devised for milling tests focused on jet-material interaction
parameters. These parameters are:

e Degree of overlap (or cross-feed e Pressure

rate) e  Abrasive flow rate
e Standoff distance (of AWJ nozzle) e  Waterjet diameter
e Traverse rate » Milling to thin wall
e  Particle size s Rotation speed

Figure 15 shows the strategy of tests for milling. The base point parameters that were
selected represent effective AWJ cutting parameters for aluminum. Variations around the base
point were aimed at defining directions of improved parameters. The plan was dynamic in
nature, i.e., it was modified based on the milling observations as they were generated. The
experimental investigation started with exploratory tests which were conducted to actually help
in setting up the experimental plan. The appendix lists the parameters and results of the milling
tests. Rather than conducting a factorial test matrix, a simplified approach was used. In this
approach, tests were conducted in sets of five. The best set of parameters was used in the next
series of tests.

The starting parameters for milling were:

Waterjet pressure: 45 ksi
Waterjet orifice size: 0.013 inch
Abrasive flow rate; 0.52 Ib/min
Abrasive material: garnet
Particle size: 120 mesh
Mixing tube length: 3 inches
Mixing tube diameter: 0.047 inch
Traverse rate: 4,000 in./min

The test procedure was as follows:
(1) Prepare a computer spreadsheet to list the tests to be conducted and record the data.
(2) Prepare a mask with holes drilled as shown in Figure 16.
(3) Take a sample of aluminum and weigh it.
(4) Mount the aluminum sample under the mask.
(5) Conduct milling test at the - !ected condition.
(6) Remove sample and weigh it.
(7) Enter weight of sample and milling area into the computer spreadsheet.

TR-508/R. 12-90 20
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The objectives of the milling tests were to:

¢ Determine volume removal rates.

¢ Determine the accuracy of milling to a specified depth.
e Determine milling data trends.

In the following section, we present detailed observations made from the experimental
results.

5.3.3 Experimentai Results

The degree of overlap is expressed as the ratio of the cross-feed increment per revolution
of the part to the mixing tube diameter, as illustrated in Figure 17. Figure 18 shows the effect
of the degree of overlap on the volume removal rate for three different mixing tube diameters
(see appendix, test numbers 4 to 18). The highest volume removal rate is obtained with the
smallest mixing tube diameter. This result is attributed to the fact that more effective jets are
obtained with smaller-diameter mixing tubes. The cross-feed rate was adjusted according to the
mixing tube diameter and the required degree of overlap. For large mixing tubes, a higher
cross-feed rate was used to maintain a similar overlap rate as compared to a smaller mixing
tube.

The volume romoval rate peaks at certain overlap ratios.  Figure 19 shows the
corresponding depth of milling per pass, indicating that maximum depth values do not
correspond to conditions of highest volume removal rate (see appendix, test numbers 4 to 18).
The effe ;t of cross-feed rate is also represented in Figures !8 and 19 by the degree of overlap.
From Figure 19, it is obvious that as the degree of overlap (and consequently the cross-feed
rate) increases, the depth of milling per pass decreases. This depth per pass determines the
accuracy or resolution of milling. Thus, to enhance the accuracy to 0.001 inch with
dn/dm = 0.013/0.047, for example, an overlap of 0.8 or 1 must be used. Fortunately, an overlap
of 0.8 still yields the maximum volume removul rate. For other milling conditions, however,
optimization of the volume removal rate and milling accuracy will be an important task.

Figure 20 shows different milling patterns for the data given in Figures 18 and 19
Observe that the lay of the milled cavities is in the direction of the traverse. This is illustrated
schematically in Figure 21 (see appendix, test numbers 4 to 18) and is expected to occur as in
conventional milling. However, the depth of milling variation due to lay can also be controlled
by the degree of overlap, as shown in Figure 20 (see appendix, test numbers 4 to 18). No
efforts were made in this phase to quantify the details of surface morphology. Only magnified

inspection was used to select conditions for subsequent testing.
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Figure 17. Schematic of AWJ Overlap
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Figure 22. Effect of Standoff Distance on Volume Removal Rate and
Milling Depth Per Pass. p = 45 ksi, gs mesh 100, dn = 0.013 inch,
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numbers 19 to 23)
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The effect of standoff distance at an overlap ratio of 0.6 is illustrated in Figure 22 (see
appendix, test numbers 19-23). It is observed that varying the standoff distance between 0.3
and 1.2 inches did not significantly change the volume removal rate or depth of milling per
pass. Increasing the standoff distance will increase the actual degree of overlap. This is

because the jet spreads, and its actual diameter at the material surface increases (though its‘
effective core may reduce). In the data shown in Figure 22, the nominal overlap based on the

mixing tube diameter is used (see appendix, test numbers 19-23). It should be mentioned here
that the effect of increasing the jet diameter by changing the standoff distance is different than
that of increasing the mixing tube diameter. In the latter case, the mixing efficiency may be
reduced.

The effect of traverse rate (rotary motion) is illustrated in Figure 23 (see appendix, test

numbers 20, 24-27). The traverse rate should be distinguished from the cross-feed rate. The

traverse rate is more significant in controlling the jet-material interaction process and
consequently the volume removal, while the cross-feed rate controls the exposure period over a
given point in the workpiece through the number of passes. Obviously, high speeds will result
in reduced depth of cut and consequently better control over tolerance. Also, increasing the
speed over a certain limit results in a reduction in the volume removal rate, as observed in
Figure 23. In our experiments, the traverse rate was controlled by the rotary speed, a well-
controlled factor. Observe that a milling depth of 0.0007 inch is obtained. This does not
represent the best resolution value for milling tolerance. Finer tolerances will be controlled by
the particle size and surface topography more than by volume removal.

The effect of particle size on volume removal rate is illustrated in Figure 24 (see
appendix, test numbers 26, 28-30). The surface topography for these tests is also shown in the
same figure. Notice that a finer surface is obtained with finer abrasives. For mesh 150,
however, a reduction in volume removal rate is observed. Smooth surface topography may not
necessanly be an nmportant criterion for 1sogr1d mlllmg as long as the structural strength and

integrity of the part are not affected

The effect of pressure on the volume removal rate and depth of milling per pass is
illustrated in Figure 25 (see appendix, test numbers 26, 31-33). A nearly linear relationship is
observed. The data also indicate that a low threshold pressure is required. To control the depth
of milling at the end of a milling operation, the pressure may be reduced. This will reduce the
depth of milling and provide accurate control.

As in linear cutting, the abrasive flow rate effect tends to taper off as the abrasive flow
rate is increased. This is illustrated in Figure 26 (see appendix, test numbers 36-42). It is more
efficient to utilize low abrasive flow rates for higher volume removal rates; however, improved
surface uniformity may be obtained at higher abrasive flow rates. Figure 27 shows photographs
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p = 45 ksi, gs mesh 100, d, = 0.013 inch, dp = 0.047 inch, m, = 0.53 Ib/min,
inc = 0.6, u = 6.18 in/min, n = 10.96 rps (numbers under photos indicate
corresponding test number in appendix)
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Figure 26. Effect of Abraslve Flow Rate on Volume Removal Rate and Milling Depth Per
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Figure 27.  Milling Patterns for Different Abrasive Flow Rates. dm = 0.047 inch,
Im = 3 inches, dy = 0.013 inch, p = 45 ksi, gs mesh 100, n = 10.96 rps, inc = 0.6.
u = 6.18 in/min (see appendix test numbers 36-42)

TR-508/R. 12-90 32




of milled areas in which the above-mentioned advantage is not evident due to the relatively
narrow range of abrasive flow rates used.

Figure 28 (see appendix, test numbers 31, 34-35) shows the effect of waterjet diameter on
volume removal rate and depth of milling. It is observed that increasing the jet diameter from
0.009 to 0.018 inch will increase the volume removal rate from 0.16 to 0.43 in.3/min, i.e., by
less than 3 times, while the hydraulic power increased by a factor of 4. This indicates that
small-diameter waterjets are more efficient. A milling system that uses multiple small-diameter
waterjets will be more efficient than one that uses fewer jets at the same power level. This, of
course, has practical limitations when considering the reliability and maintenance of the system,

Tests were also conducted to mill to required depths. Figure 29a (see appendix, test
numbers 43-46) shows the progression of milling depth expressed as a function of the number
of passes. Figure 29b shows the calculated average depth per pass. The data show that the
milling rate is relatively linear with the number of passes, and a depth of 0.002 to 0.025 inch is
obtained per pass, This represents the milling resolution at the selected condition.

The effect of mask thickness was observed in the course of the milling tests, Masks wear
out and become thinner, but no significant ef‘fec;ts were observed on the milled aluminum
sections, Thin carbide masks (0.06 inch) were used in two tests (see appendix, test numbers 57-
58). The carbide masks were simply disks with central holes. The milled aluminum patterns
did not show any differences compared to those milled with 0,25-inch-thick steel masks. It was
observed, however, that the perpendicularity of the mask's edges and its fit to the aluminum
workpiece generally did have an effect on the milled edges. For example, if the mask is not in
uniform contact with the workpiece, edges may not well represent the mask geometry, as shown
in Figure 30, Observe the degree of out-of-roundness of the produced pocket hole.

No quantitative analysis was done to study the effect of mask wear on web thickness. It
is expected, however, that excessive mask wear will affect the number of times a mask can be
used to produce web thicknesses within the required tolerances. The use of steel masks in this
study to produce up to three milled workpieces did not appear to affect web thickness
significantly; measurements on random samples showed variations in web thickness of less than
0.003 inch from the first to the third sample. Detailed studies on this issue, along with the use
of harder materials for masks, need to be addressed in future work.
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Figure 30. Irregular Hole Boundary Due to Improper Masking
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6. DIFFUSION BONDING

A numbe: of industry sources were contacted and presented with the following question:
Can a4 thin skin of sheet metal be diffusion-bonded to the outside of a 45-inch-diameter
circular honeycomb isogrid panel? The skin material can be the same as the honeycomb
material, The industry sources that we contacted included:

¢ Pressure Technology, Inc. (PTI)

¢ Howmet

e International Pressure Service, Inc. (IPS)

e Industrial Material Technology

e BeamAloy

Before presenting the findings, we will first describe the process of diffusion bonding,
This process is a subset of hot isostatic pressing (HIP) technology, which uses high pressure and
temperature to densify a powdered metal or plastic part or a previously sintered part,

The diffusion bonding procedure is used to enclose the part in a sealed bag or can that is
evacuated of air. The part and can (or bag) are put into the furnace where they are exposed to
high pressures at a temperature below the part’s melting point. If the part is one that can be
*HIPped" at low temperatures, such as plastics, a rubber bag is used and hydraulic fluid is used
for pressurizing. If the part must be heated above the rubber's safe temperature, argon gas is
used. Temperatures of 1,400 to 2,000°C and pressures of 15 to 30 ksi are used with the argon
gas. Pressures up to 60 ksi are used with hydraulic fluid. The evacuation and pressurization
process collapses the can completely over the part.

Diffusion bonding by this process was originally used to install cylinders over nuclear fuel
rods. Not all parts have a shape that is conducive to this process, however; void spaces may
collapse under the pressure. The can must completely conform to the outside surface of the part.

The cost of this process is about $2,000 to $2,600 per run. This does not include
fabrication of the can. The furnace size varies from vendor to vendor. PTI's furnace is
16 inches in diameter and 44 inches long; IPS's furnace is about 60 inches long.

Based on our discussions with the industry sources, the following conclusions were made:

e This application is beyond the current state of the art in diffusion bonding.

e The shape of the isogrid honeycomb requires either an intricate can that conforms to

the ribs and hollows or a can that spans the ribs without collapsing under pressure.

e The size of the part is larger than the furnaces surveyed.

e This application requires development efforts by an HIP company.

The industry sources listed above suggested the following alternatives:
e A brazing process submerged in heated flux
e Adhesive bonding
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7.  DEMONSTRATION MILLING OF ISOGRID PATTERNS

Isogrid milling tests were conducted using the most feasible approach to demonstrate the
overall milling process. This approach involved the use of steel masks to AWJ machine the
isogrid pattern in preformed aluminum tubes. The parameters for milling were selected from
the pravious tests, These are:

p = 50 ksi
dn = 0.018 inch
dm = 0.047 inch
garnet mesh = 100
u = 8,000 in./min

m, = 1.3 1b/min

Figure 31 shows plots of milling depth, milling depth per pass and volume removal rate
for isogrid milling (see appendix, test numbers 51-54). The data were recorded by measuring
the depth of milling after certain number of passes as shown in Figure 31. Figure 32 shows a
milled sample and the steel mask used. The wear on the steel mask was less than one-third that
of the aluminum; this implies that a steel mask can be used three times for isogrid milling.

Three rings were machined (using one mask) to produce 18 patterns such as the one
shown in Figure 32a. In the demonstration milling tests, the depth of milling was frequently
measured after every 10 or 20 passes. The measured depth was compared to the data given in
Figure 31. All measured values fell within 0.003 inch of expected values, which is considered
to be in close agreement with milling resolution (depth per pass).

Figure 33 shows the steel masks mounted on the inside of a tube. Obvicusly, a mask that
was in the form of a complete cylinder could have been used. Figure 34 shows the milled ring
after removing the masks.

Isogrid patterns were inspected for surface finish and uniformity of depth. No efforts
were conducted in this study to control the surface finish, as efforts were mainly focused on
controlling the depth of milling. Figure 35 shows a profilometer plot of a representative milled
surface. Observe that the surface is uniform in depth and that the roughness contour is regular.

A number of milied aluminum sections were inspected for milling depth uniformity.
Measurements were conducted at various locations, as shown in Figure 36. Eleven radial
locations were selected to measure the skin thickness on a milled aluminum tube to a nominal
skin thickness of 0.092 inch. At every radial location, two measurements were taken using a
micrometer with ball points. The aluminum thickness was also measured as a reference check to

ensure the accuracy of the data. The measured skin thickness data are shown in Table 1.
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Figure 33. Multiple Isogrid Patterns Milled on Inside of Tube
Using a Number of Masks
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Figure 34. Isogrid Pattern Milled on Inside of Tube
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Table 1. Skin Thickness Uniformity on an AWJ-Milled Aluminum Tube

Radial Skin e
Location | yociiion'1 | Lucation 2
1 0.092 0.093
2 0.093 0.094
3 0.094 0.094
4 0.092 0.093
5 0.093 0.093
6 0.093 0.093
7 0.090 0.091
8 0.092 0.092
9 0.093 0.092
10 0.095 0.094
1" 0.093 0.093

Average thickness = 0,093
Standard deviation = 0.001

Skin thickness measurements were also recorded at 12 locations inside two six-way isogrid
pattorns milled on different tubes, The inspection data are shown in Table 2.

Another set of skin thickness measurements at seven locations inside a triangle as shown
in Figure 36. Two samples were used for this test, and the data are given in Table 3.

1t can be seen from the data in Tables 1 through 3 that milling depth can be controlled to
approximately 0.00! inch. Standard deviation data on milling depth showed a maximum
deviation of 0.0015 inch. Process refinement by improved control over the parameters and
optimization will result in improved uniformity,
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Table 2. Skin Thickness Measurements at 12 Locations
Inside Six-way Structure (two each triangle)

| Location | g Test | Test
1 0.051 0.036
2 0.051 0.036
3 0.054 0.034
4 0.052 0.034
5 0.054 0.036
6 0.053 0.034
7 0,053 0.035
8 0.053 0.036
9 0.054 0.035
10 0.051 0.034
11 0.053 0.033
12 0.051 0.035
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Table 3. Skin Thickness Measurements at Seven Locations
Inside One Triangle

Test Test
Locatlon Sample 1 Sample 2
| 0.052 0.035
2 0.052 0.034
3 0.049 0.035
4 0.051 0.033
5 0.051 0.034
6 0.052 0.036
vl 0.053 0.033
Average
Thickness 0.051 0.034
Standard
Deviation 0.001 0.00!
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8. ECONOMIC ANALYSIS

Here, we present a simple economic analysis to estimate the approximate cost of AWJ
milling of isogrid structures. A detailed analysis and cost optimization will be conducted in
Phase II and will include addressing the design and manufacturing of a machining center.

The cost analysis is based on a machining center consisting of the following subsystems:

o High-pressure pumping system

o Nozzle and workpiece manipulator system(s)

s Nozzle and abrasive feed system

e Sensors and controls

e  Waste handling system

The high pressure pumping systemn should be sufficient to at least power a single nozzle.
A typical nozzle used in this study operates at 45 ksi and 0.75 gal/min of water. This requires
about 28 horsepower, which is well within the operating range of commercially available
pumping units. The cost of high-pressure pumps varies between $30,000 and $80,000,
depending on the desired degree of control, pressures, and flow rates.

The manipulator for the nozzle and workpiece uses a rotating workpiece (which is a
cylinder) and axially moves the nozzle inside this cylinder at the proper standoff distance. This
system can be used for milling and will also be used for cutting the mask, which requires that
the part rotation unit can be programmed for position control. There are alternatives to this
approach which, again, will be addressed in detail in another study. For the purpose of this
cost analysis, it will be assumed that the manipulator system will cost $300,000.

The nozzle and abrasive feed system will be typical of current commercially available
hardware. A typical price for a complete unit is $13,000.

Sensors and controls represent an important subsystem which can be of varying degrees of
complexity. Process parameters need to be accurately monitored and controlled for precision

machining. Additionally, the machining results need to b frequently inspected: — It will be - - -

assumed in this study that the cost of the sensors and controls is $50,000.

The waste recovery system will consist of a sludge pump and a settling container. The
water, abrasives, and cutting debris will be transported from the cutting area to the settling tank
vis hoses. The cost for this system is assumed to be $30,000.

Thus, the total capital cost for an AWJ machining center for isogrid milling will be
sssumed to be $500,000.
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The hourly costs of system operation are as follows:

Capital Equipment; $48
Maintenance: $5
Consumables (orifice, tubes, $20
abrasives, etc.):

Power (based on 75 horsepower); $5
Operator $15
TOTAL HOURLY COST: $93

Here, the hourly cost of capital equipment is based on the following assumptions: 7-year
lifetime, 8 hr/day operation, 10% interest rate, and zero residual (scrap) value,

The machining process for an isogrid structure will consist of steel mask cutting and
aluminum skirt milling. The machining time will be estimated for an example case. In this
case, an isogrid pattern in a 36-inch inside diameter aluminum tube with a length of 12 inches
will be considered. The total linear inches of cutting a steel mask is estimated at 5,940 inches,
This was calculated based on the geometry given in Figure 1. A steel mask made out of a 36-
inch outside diameter tube with 0.25~inch thickness and 12-inch height will require a total of
about 10.]1 hours of cutting. The cutting speed for steel uscd in this estimation is 10 in./min,
although this speed can be increased to 20 in./min with multiple or more powerful jets.

The milling time can be calculated simply based on the total volume to be removed and
the volume removal rate data generated in this study. The volume to be swept is 7*4*D*L*h,
For our example, the length L is 12 inches, the diameter D is 36 inches, and the depth of
milling & will be 0.24 inch. Thus, the total volume is approximately 362 in3 Assuming that a
single jet will be used, the volume removal rate will be about 0.5 in.3/min. This leads to a total
milling time of about 10.86 hours. The total AWJ machining time for an isogrid tube (36-inch
inside diameter, 12 inches long) is then about 21 hours, which includes steel mask cutting time
and aluminum milling,

One mask, however, can effectively be used three times, For the above example, a 36-
inch-long section will require only one mask (12 inches long) to be indexed axially to mill three
12-inch-long sections. ‘The total machining time for a 36-inch-long skirt will be
10.80 * 3 + 10.1 = 42.7 hours.

This example is shown in Table 4, which also shows additional data on the milling time of
isogrid skirts. In this table, N; is the number of jets to be used, D is the inside diameter to be
milled, and L is the height of the tubular skirt. The mask cutting time 7. is given for steu!
wiiile the milling time Ty, is given for aluminum. For this simple analysis, the total iime T} is

calculated by adding one-third of the steel mask cutting time to the milling time.
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Table 4. Mask Cutting and Isogrid Milling Times

D L T. Tm T, D L T Tm T |
Nj | (inch) [(inch)| (hr) | (hr) | (hr) Nj | (inch) | (inch)| (hr) | (hr) | (hr)
1 36 12 10,1 109 | 14.2 2 36 36 152 | 163 | 213
1 42 12 i1.8 | 12.7 | 16.6 2 42 36 177 | 19.0 | 249
| 48 12 13.5 1 145 | 19.0 2 48 36 20.2 | 21.7 | 284
1 56 12 157 | 16,9 | 22.1 2 56 36 23.6 | 253 | 332
! 36 24 20,2 | 21.7 | 284 2 36 48 20.2 | 21,7 | 284
i 48 24 269 | 289 | 379 2 48 48 269 | 289 | 379
1 48 24 269 | 289 | 379 2 48 48 26.9 | 289 | 379
1 56 24 314 | 338 | 44.2 2 56 48 314 | 33.8 | 44.2
| 36 36 303 | 326 | 42.7 3 36 12 34 36 4.7
1 42 36 354 | 380 | 498 3 42 12 39 4.2 5.5
1 48 36 40.4 | 434 | 56.9 3 43 12 4.5 4.8 6.3
| 56 36 47.1 | 506 | & 3 56 12 52 5.6 7.4
1 36 48 40.4 | 434 | 56.9 3 36 24 6.7 7.2 9.5
1 48 48 539 | 579 | 75.8 3 48 24 9.0 9.6 12.6
1 48 48 539 | 579 | 758 3 48 24 9.0 9.6 12,6
1 56 48 629 | 67.5 | 83.5 3 56 24 10.5 | 11.3 | 147
2 36 12 5.1 54 7.1 3 36 36 10,1 | 10,8 | 14.2
2 42 12 59 6.3 8.3 3 42 36 11.8 | 127 | 166
2 48 12 6.7 7.2 9.5 3 48 36 13,5 | 145 | 190
2 56 12 7.9 8.4 11.1 3 56 36 157 | 169 | 22.1
2 36 24 10.1 109 | 14.2 3 36 48 135 | 145 | 19.0
2 48 24 135 | 145 | 19.0 3 48 48 18.0 | 19.3 | 25.3
2 48 24 135 | 145 { 19.0 3 48 48 180 | 19.3 | 253
2 56 24 157 | 169 | 22.1 3 56 48 21.0 | 22,5 | 295

Tihe above examples suggest that there may be an optimum musk iength based on the total
length of the skirt. For example, a mask length of 18 inches may be more economical than a
shorter mask. Also, a harder mask material such as tungsten carbide, which may last over 30
times as long as steei, may be more economical even though more expensive initially.
Additionally, mask machining may be done by laser if that method is more economical.
Another optimization issue is related to the use of multiple jets rather than a single jet, which
will reduce the machining time in direct proportions. All these factors need to be addressed in
a detailed optimization effort,

Let us assume now that a 36-inch-long skirt with a 36-inch inside diameter needs to be
milled with the isogrid pattern. The total machining time will be 42.7 hours, as determined
earlicc., The hourly cost of equipment operation is $93, as approximated above. With overhead,
it can be assumed that the total hourly cost is approximately $279 based on a total multiple of 3.
Accordingly, the total cost of machining will be 42.7 x 279 = $11,913. This cost can be reduced
significantly through optimization as discussed above.
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9. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be made based an the results of the study presented in this

report;

Abrasive-waterjets have been demonstrated to be capable of milling isogrid patterns
precisely in aluminum.

This feasibility investigation indicated that cavities can be AWJ-milled in aluminum
to a uniformity of 0.001 inch. Improved surface uniformity can be achieved with
further process refinement.

Surface finish improvement was not attempted in this phase., It is recommended that
this effort be addressed in future studies.

The AWJ milling process can be achieved on curved surfaces on the inside of tubes.
The AWJ isogrid machining process includes mask cutting, which can be achieved
using the same AWJ nozzle.

For example, the total machining time of & 48-inch-diameter, 12-inch-long skirt is
estimated at 6.3 hours if three jets are used.

Aluminum through-cutting of isogrid patterns can be achieved at high rates
(exceeding 30 in./min) on curved surfaces (from the inside or outside of a tube). The
cutting time for a 48-inch-diameter, 12-inch-long skirt is estimated as 4.5 hours with
a single jet,

Diffusion bonding of thin aluminum skins on a machined skirt appears to be beyond
the current state-of-the art.

The use of the "mask and mill" approach is the most promising of the AWJ milling
methods.

Optimization of the AWJ milling process and improved masking techniques are efforts
that need to be addressed in more detail.

The AWJ milling process is not limited to specific shapes as in conventional mi'ling.
Consequently, more efficient isogrid shapes can be machined to reduce parasitic
weight. Also, the AWJ] process presents no limitation on material,
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APPENDIX

SPREADSHEET PRINTOUT OF EXPERIMENTAL DATA

The symbols used on the following pages are explained below:

No
dm

Im

dn

p

gs

ma

Yt

N

inc

i

u

sp
Np-cc
Np-¢
sod
area
volume
av. h
h/pss
vol rate
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test number

diameter of mixing tube

length of mixing tube

waterjet orifice diameter

pressure

garnet sand

abrasive flow rate

traverse rate

drum rotational speed per second
ratio of cross-feed increment to mixing tube diameter
increment of AWJ cross-f=ed
cross-feed rate

motor setting in counts per second
number of passes counterclockwise
number of passes clockwise
standoff distance

milling area

volume removed

average depth

average depth of milling per pass
volume removal rate
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